Acta Cryst. (1976). B32, 928

PbWO₄-III (A High-Pressure Form)

BY P. W. RICHTER, G. J. KRUGER AND C. W. F. T. PISTORIUS

National Physical Research Laboratory, CSIR, P.O. Box 395, Pretoria, South Africa

(Received 20 October 1975; accepted 22 October 1975)

Abstract. PbWO₄-III, monoclinic, $P2_1/n$, a=12.709 (5), b=7.048 (3), c=7.348 (3) Å, $\beta=90.57$ (4)°, Z=8, $D_c=9.19$ g cm⁻³. Crystals were prepared under high pressure at high temperature in the presence of water. PbWO₄-III is formally isomorphous with BaWO₄-II, but the coordination number of both sets of Pb atoms is eight.

Introduction. PbWO₄ occurs in nature as tetragonal stolzite (PbWO₄-I, scheelite-type) and monoclinic raspite (PbWO₄-II, unique structure, not wolframite-type). PbWO₄-II is $1\cdot3\%$ less dense than PbWO₄-I (Shaw & Claringbull, 1955), and has not yet been prepared synthetically. PbWO₄-III exists above the pressure $P(\text{kbar})=0.7+0.039 T(^{\circ}C)$ ($T=350-650 \circ C$), and is quenchable to normal pressure (Chang, 1971).

Single crystals of $PbWO_4$ -III were prepared by sealing precipitated $PbWO_4$ -I with a small amount of distilled water in a thin-walled Pt capsule, treating this for 4h in a piston-cylinder device (Kennedy & LaMori, 1961) at 500 °C, 32 kbar, and cooling slowly before release of pressure.

Intensities were collected on a Philips PW1100 four-circle diffractometer in the ω -2 θ mode with graphite-monochromated Mo K α radiation. A roughly spherical crystal with radius 0.1 mm was used. Data

were collected to the limit of the Cu sphere ($\theta = 3 - 27 \cdot 4^{\circ}$) at a scan rate of $0 \cdot 04^{\circ} \text{ s}^{-1}$ and a constant scan width of $1 \cdot 4^{\circ}$. The background was counted for half the total scanning time on each side of the reflexion. Of the 1501 independent reflexions measured, 399 were considered unobserved with $I < 2\sigma(I)$. The systematic absences were h0l, h+l=2n+1, and 0k0, k=2n+1, indicating the space group $P2_1/n$. The large μR of $8 \cdot 73$ necessitated absorption corrections, and corrections for a spherical crystal were applied.

Since the cell dimensions and space group indicated that PbWO₄-III is probably isomorphous with the high-pressure phase BaWO₄-II (Kawada, Kato & Fujita, 1974), the fractional coordinates found there were used as the starting point for full-matrix leastsquares refinement. The temperature factors of the O atoms were refined isotropically. The function minimized was $\sum \omega (\Delta F)^2$ with $1/\sigma_F^2$ weights. $R = \sum \Delta F / \sum F_o$ and $R_w = [\sum \omega (\Delta F)^2 / \sum \omega F]^{1/2}$ converged to final values of 0.056 and 0.066, respectively. The atomic parameters are listed in Table 1.*

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31472 (11 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Fig. 1. A stereo view (Johnson, 1971) of PbWO₄-III down b. a is horizontal and c vertical, down. Pb and W atoms are represented by the largest and smallest circles, respectively.

Table 1. Fractional coordinates (× 10⁴) and thermal parameters (Å²×10⁴) with e.s.d.'s Anisotropic thermal parameters are of the form $T = \exp \left[-2\pi^2 (a^{*2}h^2 U_{11} + ... 2b^*c^*k l U_{23})\right]$.

	x	У	Ζ	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Pb(1)	1486 (1)	6887 (2)	1568 (2)	146 (7)	152 (8)	195 (7)	14 (6)	30 (5)	21 (6)
Pb(2)	1445 (1)	9410 (2)	6316 (2)	165 (7)	191 (8)	148 (6)	-23(6)	41 (5)	5 (6)
W(1)	840 (1)	1642 (2)	876 (2)	77 (7)	67 (7)	53 (6)	-4(5)	28 (4)	-4(5)
W(2)	894 (1)	4520 (2)	6499 (2)	64 (6)	70 (7)	59 (6)	2 (5)	29 (4)	11 (5)

.

	x	У	z	U
O(1)	958 (22)	175 (43)	2849 (37)	157 (56)
O(2)	1837 (20)	5856 (40)	7837 (34)	116 (51)
O(3)	559 (19)	6450 (37)	4755 (31)	63 (46)
O(4)	2159 (21)	2556 (42)	554 (38)	155 (56)
O(5)	522 (21)	2726 (42)	8267 (37)	145 (53)
O(6)	1754 (20)	3099 (40)	5238 (34)	116 (51)
O(7)	261 (20)	3779 (40)	1862 (35)	121 (52)
O(8)	789 (19)	9198 (40)	9416 (34)	111 (50)

Table 1 (cont.)

All calculations were done with the X-RAY system of crystallographic programs (Stewart, Kruger, Ammon, Dickinson & Hall, 1972). The scattering factors were taken from Cromer & Mann (1968). Cell dimensions were obtained from a least-squares fit of highangle peaks in the powder pattern.

Discussion. PbWO₄-III is isomorphous with BaWO₄-II. The structure contains densely packed two-dimensional networks of slightly distorted WO₆ octahedra linked by Pb atoms. Fig. 1 illustrates two of these layers and their positions relative to the unit cell.

The bond lengths and angles are listed in Tables 2 and 4. The only significant differences between the structures of BaWO₄-II and PbWO₄-III are in the coordination around the Pb atoms. The average Pb-O distance is 2.67 Å for both sets of Pb atoms, while the average Ba–O distances are 2.83 and 2.76 Å for Ba(1) and Ba(2), respectively. Pb(1) is surrounded by eight O atoms between 2.43 and 2.88 Å with the next nearest, O(4), at 3.28 Å, whereas Ba(1) has nine O atoms, including O(4), surrounding it at distances between 2.72 and 3.05 Å with the next nearest at 3.20 Å. The comparison in Table 4 between the bond lengths in BaWO₄-II and PbWO₄-III clearly shows that the environments of the Ba and Pb atoms differ significantly. The lower effective coordination about Pb(1) compared to Ba(1) is reflected in the density. BaWO₄-II is 12.7% denser than scheelite-type BaWO₄-I, whereas PbWO₄-III is only 8.7% denser than scheelite-type PbWO₄-I.

Table 2. Interatomic distances (Å) around W atoms

W-O			
	W (1)		W(2)
O(1)	1.79 (3)	O(2)	1.81 (3)
O(4)	1.81 (3)	O(3)	1.91 (3)
O(7)	1.83 (3)	O(5)	1.88(3)
$O(5^i)$	2.10 (3)	O(6)	1.76 (3)
O(8 ¹¹)	2.03(3)	$O(3^{iii})$	2.17(3)
O(8 ⁱⁱⁱ)	2.16(3)	$O(7^{iii})$	2.26(3)
Average	1.95	Average	1.97
0-0			
Min.	2.47 (3)	Min.	2.51
Max.	3.06	Max.	2.96
Average	2.75	Average	2.75

Symmetry code: i x, y, -1+z; ii x, -1+y, -1+z; iii -x, 1-y, 1-z.

Table 3. Bond angles (°) around W atoms (all angles have an e.s.d. of $\pm 1^{\circ}$)

Around W	(I) atom				
	O(4)	O(7)	O(5 ⁱ)	O(8 ⁱⁱ)	O(8 ⁱⁱⁱ)
O(1)	104	101	165	87	90
O(4)		98	85	105	166
O(7)			89	154	83
$O(5^i)$				80	80
O(8 ⁱⁱ)					72
Around W	(2) atom				
	O(3)	O(5)	O(6)	O(3 ⁱⁱⁱ)	O(7 ⁱⁱⁱ)
O(2)	98	98	100	162	82
O(3)		152	101	76	81
O(5)			98	82	80
O(6)				97	177
$O(3^{iii})$					81

Table 4. Interatomic distances (Å) between Pb and O atoms in PbWO₄-III, compared to the corresponding Ba-O distances in BaWO₄-II

Pb–O an	d Ba–O				
	Pb(1)	Ba(1)		Pb(2)	Ba(2)
O(1 ⁱ)	2.59 (3)	2.95	O(1 ⁱ)	2.67 (3)	2.67
$O(2^{11})$	2.88(3)	2.76	O(2)	2.79 (3)	2.79
O(3)	2.65(3)	2.81	$O(2^{v})$	2.49(3)	2.64
O(4)	[3.28 (3)]*	3.05	O(3)	2.63(3)	2.74
$O(4^{111})$	2.76(3)	2.76	O(4 ¹¹¹)	2.61(3)	2.83
$O(5^{iv})$	2.57(3)	2.80	$O(5^i)$	2.99 (3)	3.05
$O(6^{iii})$	2.75(3)	2.91	$O(6^i)$	2.75 (3)	2.85
O(7)	2.70(3)	2.75	O(8)	2.44(3)	2.52
$O(8^{ii})$	2.43(3)	2.72	Average	2.67	2.76
Average	2.67	2.83	-		

Symmetry code: i x, 1+y, z; ii x, y, -1+z; iii $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; iv -x, 1-y, 1-z; v $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.

* Not included in average value.

Phases similar to BaWO₄-II and PbWO₄-III may possibly occur at high pressures also in the corresponding molybdates. No ABO₄-type phases are known as yet that are more densely packed than BaWO₄-II.

References

- CHANG, L. L. Y. (1971). J. Amer. Ceram. Soc. 54, 357–358. CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321–324.
- JOHNSON, C. K. (1971). ORTEP-II. Oak Ridge National Laboratory Report ORNL-3794.
- KAWADA, I., KATO, K. & FUJITA, T. (1974). Acta Cryst. B30, 2069–2071.
- KENNEDY, G. C. & LAMORI, P. N. (1961). In Progress in very High Pressure Research. Edited by P. F. BUNDY, W. R. HIBBARD & H. M. STRONG. New York: John Wiley.
- SHAW, R. & CLARINGBULL, G. F. (1955). Amer. Min. 40, 933.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1972). The X-RAY system, version of June 1972. Tech. Rep. TR-192, Computer Science Center, Univ. of Maryland, College Park, Maryland.