PbWO_{4}-III (A High-Pressure Form)

By P. W. Richter, G.J. Kruger and C.W.F.T.Pistorius
National Physical Research Laboratory, CSIR, P.O. Box 395, Pretoria, South Africa

(Received 20 October 1975; accepted 22 October 1975)

Abstract. PbWO_{4}-III, monoclinic, $P 2_{1} / n, a=12.709$ (5), $b=7.048$ (3), $\quad c=7.348$ (3) $\AA, \quad \beta=90.57$ (4) ${ }^{\circ}, \quad Z=8$, $D_{c}=9.19 \mathrm{~g} \mathrm{~cm}^{-3}$. Crystals were prepared under high pressure at high temperature in the presence of water. PbWO_{4}-III is formally isomorphous with $\mathrm{BaWO}_{4}-\mathrm{II}$, but the coordination number of both sets of Pb atoms is eight.

Introduction. PbWO_{4} occurs in nature as tetragonal stolzite ($\mathrm{PbWO}_{4}-\mathrm{I}$, scheelite-type) and monoclinic raspite $\left(\mathrm{PbWO}_{4}-\mathrm{II}\right.$, unique structure, not wolframitetype). $\mathrm{PbWO}_{4}-\mathrm{II}$ is $1 \cdot 3 \%$ less dense than $\mathrm{PbWO}_{4}-\mathrm{I}$ (Shaw \& Claringbull, 1955), and has not yet been prepared synthetically. PbWO_{4}-III exists above the pressure $P(\mathrm{kbar})=0.7+0.039 T\left({ }^{\circ} \mathrm{C}\right)\left(T=350-650^{\circ} \mathrm{C}\right)$, and is quenchable to normal pressure (Chang, 1971).

Single crystals of PbWO_{4}-III were prepared by sealing precipitated $\mathrm{PbWO}_{4}-\mathrm{I}$ with a small amount of distilled water in a thin-walled Pt capsule, treating this for 4 h in a piston-cylinder device (Kennedy \& LaMori, 1961) at $500^{\circ} \mathrm{C}, 32 \mathrm{kbar}$, and cooling slowly before release of pressure.

Intensities were collected on a Philips PW1100 four-circle diffractometer in the $\omega-2 \theta$ mode with graphite-monochromated Mo $K \alpha$ radiation. A roughly spherical crystal with radius 0.1 mm was used. Data
were collected to the limit of the Cu sphere $(\theta=3-$ 27.4°) at a scan rate of $0.04^{\circ} \mathrm{s}^{-1}$ and a constant scan width of $1 \cdot 4^{\circ}$. The background was counted for half the total scanning time on each side of the reflexion. Of the 1501 independent reflexions measured, 399 were considered unobserved with $I<2 \sigma(I)$. The systematic absences were $h 0 l, h+l=2 n+1$, and $0 k 0, k=2 n+1$, indicating the space group $P 2_{1} / n$. The large μR of 8.73 necessitated absorption corrections, and corrections for a spherical crystal were applied.
Since the cell dimensions and space group indicated that $\mathrm{PbWO}_{4}-\mathrm{III}$ is probably isomorphous with the high-pressure phase BaWO_{4}-II (Kawada, Kato \& Fujita, 1974), the fractional coordinates found there were used as the starting point for full-matrix leastsquares refinement. The temperature factors of the O atoms were refined isotropically. The function minimized was $\sum \omega(\Delta F)^{2}$ with $1 / \sigma_{F}^{2}$ weights. $R=\sum \Delta F / \sum F_{o}$ and $R_{w}=\left[\Sigma \omega(\Delta F)^{2} / \Sigma \omega F\right]^{1 / 2}$ converged to final values of 0.056 and 0.066 , respectively. The atomic parameters are listed in Table 1.*

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31472 (11 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

Fig. 1. A stereo view (Johnson, 1971) of PbWO_{4}-III down b. a is horizontal and c vertical, down. Pb and W atoms are represented by the largest and smallest circles, respectively.

Table 1. Fractional coordinates ($\times 10^{4}$) and thermal parameters $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s Anisotropic thermal parameters are of the form $T=\exp \left[-2 \pi^{2}\left(a^{* 2} h^{2} U_{11}+\ldots 2 b^{*} c^{*} k l U_{23}\right)\right]$.

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
	$x b(1)$	$1486(1)$	$6887(2)$	$1568(2)$	$146(7)$	$152(8)$	$195(7)$	$14(6)$	$30(5)$
$\mathrm{Pb}(2)$	$1445(1)$	$9410(2)$	$6316(2)$	$165(7)$	$191(8)$	$148(6)$	$-23(6)$	$41(5)$	$5(6)$
$\mathrm{W}(1)$	$840(1)$	$1642(2)$	$876(2)$	$77(7)$	$67(7)$	$53(6)$	$-4(5)$	$28(4)$	$-4(5)$
$\mathrm{W}(2)$	$894(1)$	$4520(2)$	$6499(2)$	$64(6)$	$70(7)$	$59(6)$	$2(5)$	$29(4)$	$11(5)$

Table 1 (cont.)

		y	z	U
		y	z	U
$\mathrm{O}(1)$	$958(22)$	$175(43)$	$2849(37)$	$157(56)$
$\mathrm{O}(2)$	$1837(20)$	$5856(40)$	$7837(34)$	$116(51)$
$\mathrm{O}(3)$	$559(19)$	$6450(37)$	$4755(31)$	$63(46)$
$\mathrm{O}(4)$	$2159(21)$	$2556(42)$	$554(38)$	$155(56)$
$\mathrm{O}(5)$	$522(21)$	$2726(42)$	$8267(37)$	$145(53)$
$\mathrm{O}(6)$	$1754(20)$	$3099(40)$	$5238(34)$	$116(51)$
$\mathrm{O}(7)$	$261(20)$	$3779(40)$	$186(35)$	$121(52)$
$\mathrm{O}(8)$	$789(19)$	$9198(40)$	$9416(34)$	$111(50)$

All calculations were done with the X-RAY system of crystallographic programs (Stewart, Kruger, Ammon, Dickinson \& Hall, 1972). The scattering factors were taken from Cromer \& Mann (1968). Cell dimensions were obtained from a least-squares fit of highangle peaks in the powder pattern.

Discussion. $\mathrm{PbWO}_{4}-\mathrm{III}$ is isomorphous with BaWO_{4}-II. The structure contains densely packed two-dimensional networks of slightly distorted WO_{6} octahedra linked by Pb atoms. Fig. 1 illustrates two of these layers and their positions relative to the unit cell.

The bond lengths and angles are listed in Tables 2 and 4. The only significant differences between the structures of $\mathrm{BaWO}_{4}-\mathrm{II}$ and PbWO_{4}-III are in the coordination around the Pb atoms. The average $\mathrm{Pb}-\mathrm{O}$ distance is $2.67 \AA$ for both sets of Pb atoms, while the average $\mathrm{Ba}-\mathrm{O}$ distances are 2.83 and $2.76 \AA$ for $\mathrm{Ba}(1)$ and $\mathrm{Ba}(2)$, respectively. $\mathrm{Pb}(1)$ is surrounded by eight O atoms between 2.43 and $2.88 \AA$ with the next nearest, $\mathrm{O}(4)$, at $3.28 \AA$, whereas $\mathrm{Ba}(1)$ has nine O atoms, including $\mathrm{O}(4)$, surrounding it at distances between 2.72 and $3.05 \AA$ with the next nearest at $3.20 \AA$. The comparison in Table 4 between the bond lengths in $\mathrm{BaWO}_{4}-\mathrm{II}$ and PbWO_{4}-III clearly shows that the environments of the Ba and Pb atoms differ significantly. The lower effective coordination about $\mathrm{Pb}(1)$ compared to $\mathrm{Ba}(1)$ is reflected in the density. BaWO_{4}-II is $12 \cdot 7 \%$ denser than scheelite-type $\mathrm{BaWO}_{4}-\mathrm{I}$, whereas PbWO_{4}-III is only 8.7% denser than scheelite-type $\mathrm{PbWO}_{4}-\mathrm{I}$.

Table 2. Interatomic distances (\AA) around W atoms W-O

	W(1)		W(2)
$\mathrm{O}(1)$	1.79 (3)	$\mathrm{O}(2)$	$1 \cdot 81$ (3)
$\mathrm{O}(4)$	1.81 (3)	$\mathrm{O}(3)$	1.91 (3)
$\mathrm{O}(7)$	1.83 (3)	O(5)	$1 \cdot 88$ (3)
$\mathrm{O}\left(5^{\text {i }}\right.$)	$2 \cdot 10$ (3)	O (6)	1.76 (3)
$\mathrm{O}\left(8^{\text {ii) }}\right.$)	2.03 (3)	$\mathrm{O}\left(3^{\text {iii }}\right.$)	$2 \cdot 17$ (3)
$\mathrm{O}\left(8^{\text {iii }}\right)$	$2 \cdot 16$ (3)	$\mathrm{O}\left(7^{\mathrm{iii}}\right)$	2.26 (3)
Average	1.95	Average	1.97
$\mathrm{O}-\mathrm{O}$			
Min.	2.47 (3)	Min.	2.51
Max.	3.06	Max.	2.96
Average	$2 \cdot 75$	Average	2.75

[^0]Table 3. Bond angles $\left({ }^{\circ}\right)$ around W atoms (all angles have an e.s.d. of $\pm 1^{\circ}$)

Around $\mathrm{W}(1)$ atom					
	$\mathrm{O}(4)$	$\mathrm{O}(7)$	$\mathrm{O}\left(5^{\mathrm{i}}\right)$	$\mathrm{O}\left(8^{\mathrm{ii}}\right)$	$\mathrm{O}\left(8^{\mathrm{ili}}\right)$
$\mathrm{O}(1)$	104	101	165	87	90
$\mathrm{O}(4)$		98	85	105	166
$\mathrm{O}(7)$			89	154	83
$\mathrm{O}\left(5^{\mathrm{i}}\right)$				80	80
$\mathrm{O}\left(8^{\mathrm{i}}\right)$					72

Around $\mathrm{W}(2)$ atom					
	$\mathrm{O}(3)$	$\mathrm{O}(5)$	$\mathrm{O}(6)$	$\mathrm{O}\left(3^{\mathrm{iii}}\right)$	$\mathrm{O}\left(7^{\text {ili }}\right)$
$\mathrm{O}(2)$	98	98	100	162	82
$\mathrm{O}(3)$		152	101	76	81
$\mathrm{O}(5)$			98	82	80
$\mathrm{O}(6)$			97	177	
$\mathrm{O}\left(3^{\mathrm{iii}}\right)$					81

Table 4. Interatomic distances (\AA) between Pb and O atoms in $\mathrm{PbWO}_{4}-\mathrm{III}$, compared to the corresponding $\mathrm{Ba}-\mathrm{O}$ distances in $\mathrm{BaWO}_{4}-\mathrm{II}$
$\mathrm{Pb}-\mathrm{O}$ and $\mathrm{Ba}-\mathrm{O}$

	$\mathrm{Pb}(1)$	$\mathrm{Ba}(1)$		$\mathrm{Pb}(2)$	$\mathrm{Ba}(2)$
$\mathrm{O}\left(1^{\mathrm{i}}\right)$	$2.59(3)$	2.95	$\mathrm{O}\left(1^{\mathrm{i}}\right)$	$2.67(3)$	2.67
$\mathrm{O}\left(2^{\mathrm{if}}\right)$	$2.88(3)$	2.76	$\mathrm{O}(2)$	$2.79(3)$	2.79
$\mathrm{O}(3)$	$2.65(3)$	2.81	$\mathrm{O}\left(2^{\text {v }}\right)$	$2.49(3)$	2.64
$\mathrm{O}(4)$	$[3.28(3)]^{*}$	3.05	$\mathrm{O}(3)$	$2.63(3)$	2.74
$\mathrm{O}\left(4^{\text {iii }}\right)$	$2.76(3)$	2.76	$\mathrm{O}\left(4^{\text {iii }}\right)$	$2.61(3)$	2.83
$\mathrm{O}\left(5^{\mathrm{iv}}\right)$	$2.57(3)$	2.80	$\mathrm{O}\left(5^{\mathrm{i}}\right)$	$2.99(3)$	3.05
$\mathrm{O}\left(6^{\text {iii }}\right)$	$2.75(3)$	2.91	$\mathrm{O}\left(6^{\mathrm{i}}\right)$	$2.75(3)$	2.85
$\mathrm{O}(7)$	$2.70(3)$	2.75	$\mathrm{O}(8)$	$2.44(3)$	2.52
$\mathrm{O}\left(8^{\text {ii }}\right)$	$2.43(3)$	2.72	Average	2.67	2.76
Average	2.67	2.83			

Symmetry code: i $x, 1+y, z$; ii $x, y,-1+z$; iii $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; iv $-x, 1-y, 1-z ; \vee \frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.

* Not included in average value.

Phases similar to $\mathrm{BaWO}_{4}-\mathrm{II}$ and $\mathrm{PbWO}_{4}-\mathrm{III}$ may possibly occur at high pressures also in the corresponding molybdates. No ABO_{4}-type phases are known as yet that are more densely packed than BaWO_{4}-II.

References

Chang, L. L. Y. (1971). J. Amer. Ceram. Soc. 54, 357-358.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Johnson, C. K. (1971). ORTEP-II. Oak Ridge National Laboratory Report ORNL-3794.
Kawada, I., Kato, K. \& Fuitra, T. (1974). Acta Cryst. B30, 2069-2071.
Kennedy, G. C. \& Lamori, P. N. (1961). In Progress in very High Pressure Research. Edited by P. F. Bundy, W. R. Hibbard \& H. M. Strong. New York: John Wiley.
Shaw, R. \& Claringbull, G. F. (1955). Amer. Min. 40, 933.
Stewart, J. M., Kruger, G. J., Ammon, H. L., Dickinson, C. \& Hall, S. R. (1972). The X-RAY system, version of June 1972. Tech. Rep. TR-192, Computer Science Center, Univ. of Maryland, College Park, Maryland.

[^0]: Symmetry code: i $x, y,-1+z$; ii $x,-1+y,-1+z$; iii $-x, 1-y, 1-z$.

